
0 ~ (e-ibm01 y '~e-~k~~ + O ( r o 2 ) ,  

& @'~-' , ~ /  =(--ik)m-~-o{V) ro "+O(rK~-)' 

z/r o= | / l - - l ~ s i n O ,  y,'r o= | ' t - l .~cosO.  

Taking these expressions into account, (21) and (25) for the amplitude functions r 
be represented for ro >> ~ in the form 

�9 n q-~. 
e -2hr~ ' ~  -'~ "i m ' itUxt~.. , r~ [_--2"L 

(I) , (x,y,~-)-- /-7:5: :-- . . -- . ,  ( - - i k | / l - - l~ .cosO]  I Qlm(?) e a~q-Ukro ],  
4 . q !  0 m-~= 0 ~ " , ,  

r can 

(31) 

e-ihro 
(~2 (X; y ,  Z) = 4.~r ~ - - s i n O  /_.'~ /1,,. - -  i/,' l / -  ~ ) m c o s m - t  0 

T r t = !  
J Q,m ($) e "'.~'d; @ 0 kro -). (32) 

It follows from (31) and (32) that in the case of low-frequency oscillations of a body, when 
the parameter is k = mRo/a << i, the main contribution to the sound field far from the oscil- 
lating body is due to its axisymmetric oscillations. 
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SHOCK LOADING OF AN INFINITE PLATE CONTIGUOUS TO A FLUID 

V. P. Yastrebov UDC 532.5:539.37 

Questions of the effect of shock loadings on infinite plates in contact with a fluid 
have been examined in a number of papers [1-9]. The axisymmetric deformation of plates was 
studied in [1-6], while [i, 7-9] were devoted to the plane problem. The investigations were 
executed in different formulations. Different kinds of plate loadings (the effect of acous- 
tic pressure waves, concentrated forces or distributed loads; assignment of the motion veloc- 
ity) were considered. The plate deformation was described by different equations (the mem- 
brane deflection equation, the Bernoulli--Euler bending equation, or a Timoshenko-cype equa- 
tion). The main method of solving these problems is the method of integral transforms. Defi- 
nite difficulties occur during the solution in going from the transforms to the originals. 
Still greater difficulties are encountered in analyzing the solution and obtaining specific 
numerical results in the originals written in the form of complex single or double integrals. 
The solution in a number of papers [3, 5, 8] is hence constrained to the writing of formulas 
in quadratures, while the problem is solved in other investigations [i, 2, 4, 6, 9] by asymp- 
totic methods which are valid in a definite range of time variation. There are also separate 
results obtained by using the numerical inversion of the Laplace transform in [6] which is 
devoted to the effect of a spherical pressure wave. 

In this paper, the solution of the plane problem of bending an infinite plate in con- 
tact with a compressible fluid occupying a half-space along one of the sides of the plate is 
sought by using integral transforms. 

w The X, Z coordinate plane is in the plane of the plate, and the'Y axis is directed 
into the fluid. A transverse load distributed uniformly along the Z axis is applied instan- 
taneously to the plate along nhls whole axis. It is sufficient to consider the motion in one 
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plane of the X, Y variables. The state of the fluid in this plane is described bY a two- 
dimensional wave equation and the plate deformation is described by the Bernoulli--Eu!er 
equation for the bending of a beam strip to which a lumped force has been applied in the sec- 
tion X = 0. A solution is later presented which takes account of shear strain of the plane 

in addition to the bending. 

Dimensionless quantities are used and the following notation is introduced: 

t = TC5--1~ 32 = , ~ ' 6 - 1 ;  /d = ) ' 5  - 1 ,  (( = ( D c - 1 6  - I ,  u = ~ 5  - 1 ,  u - -  l i c  - 1 ,  

where  5 i s  t h e  p l a t e  t h i c k n e s s ;  T i s  t h e  t i m e ;  c i s  t h e  s p e e d  o f  sound  i n  t h e  f l u i d ;  ca i s  
t h e  s p e e d  o f  sound  i n  t h e  p l a t e  m a t e r i a l ;  p ,  P :  a r e  t h e  d e n s i t i e s  o f  t h e  f l u i d  and t h e  p l a t e  
m a t e r i a l ;  Q i s  a c o n s t a n t  w i t h  t h e  d i m e n s i o n a l i t y  o f  a l i n e a r  l o a d ;  ~ i s  t h e  f l u i d  v e l o c i t y  
p o t e n t i a l ;  U,V a r e  t he  t r a n s v e r s e  d i s p l a c e m e n t  and v e l o c i t y  o f  t h e  p l a t e ;  h i s  t h e  u n i t  
Heaviside function; and p, q are the Laplace and Fourier transform variables. 

The equations of state of the fluid and of beam-strip bending in dimensionless variables 
have the form 

O~q), a"-~ 0 ~  O~u , 9~O"-u #~. (g = 0),. (i.i) 
0x" ' Oy" - -  "~- ' a Ox ~ , 9 0 t 2  0--7 

where 

i 91c~ g - -  
12 pc z" 

Zero  i n i t i a l  and  t h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s  a r e  g i v e n :  

O~ __ 0 u  O ~ _  
Oy Of ( U = 0 ) '  ( P - ~  ( g - - ~ ) ,  ----Oox ( X = 0 ) ;  ( 1 . 2 )  

6u O, O"'u 6Q 
0--7~c----- ~ = - - - ~ ' ~ h ( t )  (x 0), u - + z o  (x -+oo ) .  (1.3) 

91c~ = 
A L a p l a c e  t r a n s f o r m  i n  t he  v a r i a b l e  t and a F o u r i e r  c o s i n e  t r a n s f o r m  i n  t h e  v a r i a b l e  x 

a r e  a p p l i e d  to  ( 1 . 1 ) .  T a k i n g  a c c o u n t  o f  t h e  z e r o  i n i t i a l  and c o r r e s p o n d i n g  b o u n d a r y  c o n d i -  
t i o n s  f o r  t h e  t r a n s f o r m s ,  we o b t a i n  t h e  e q u a t i o n s  

Oeq) FL 
0y'-' (p~ _:_ qo) ~FL = 0; (i. 4) 

( 6Q -i ) ,_ 9~ 2 L 
a \ , o c ~  ' p p uF ( 1 . 5 )  

The letter superscripts F and L denote, respectively, the Fourier and Laplace transforms. 
Therefore, 

u ~ L =  cos(qx)  l e x p ( - - p t )  u ( t , x ) d t d q .  
5 o 

The solution of the differential equation (1.4) for the variable y satisfying the first 
two conditions (1.2) (written in the appropriate transforms) has the form 

~ F L  ~ _ _  P~tFL 
]rp~ + q~ exp ( - -  g V P ' ~ ) .  

S u b s t i t u t i n g  t h i s  v a l u e  i n t o  ( 1 . 5 ) ,  t h e  t r a n s f o r m  u FL can be  f o u n d .  H e n c e f o r t h ,  t h e  p l a t e  
v e l o c i t y  w i l l  be  c o n s i d e r e d .  The d i m e n s i o n l e s s  q u a n t i t y  v c o r r e s p o n d i n g  to  t h e  v e l o c i t y  h a s  
t he  t r a n s f o r m  

v rE ~u ~ L =  Q (aq4 , p~p~ p'. ~ - I  
= -  2ap~ ~- ~ -  -K + V ~  ] " 

By using identity transformations this expression is reduced to the form 

vF L Q p I n 
= 25V cu 91 q ]'~i (S), 

s 2 /#p2q-2_}_ 
ff(s)=.__~.~=cs_ ~, s = l  i, 

o 
B =  p-- c - -  i c~ q 2 - - i .  

q9i ' i2 c ~ 

The f o l l o w i n g  L a p l a c e  t r a n s f o r m  f o r m u l a ,  o b t a i n e d  f rom [ 1 0 ] ,  i s  u s e d .  

(1.6) 

If fL(s) = L[f(t)], 
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then the following holds: 

I 
q |, p~ -~ qO [: ] (1.7) 

where L is the Laplace transform symbol [ii] ; s is the new notation for the Laplace transform 
variable; Jo is the zero-order Bessel function. Writing the transform in the form (1.6) cor- 
responds to the left side in (i. 7). 

The function fL(s) in (1.6) can he considered as a rational fraction in the new Laplace 
transform variable s. The original of such a function is found simply [ii]. Using this 
original and applying (i. 7), we perform a passage to the original (Laplace) from the trans- 
form (1.6). Applying the Fourier transform inversion formula to the result obtained, we write 
the final expression for the plate velocity in the form 

o o ~o~ (q~) So (q VP-i-~- ~ ~) (i. s) V = c ~ - =  k ( , ~ m ,  R'bv0 J 
u 0 It= ! 

where R ' ( s  k) = 3s~ + 2Bs k + C , s  k ( k  = 1,  2, 3) a r e  r o o t s  o f  t h e  c u b i c  e q u a t i o n  R(s) = s s + 
Bs 2 + Cs--B = O. 

Formula (1.8) remains valid when taking account of the shear strain if the coefficient 
C therein is taken in the form 

C ~ -  {~C2C--2(q%C~C-22 ~- 12)-- '--  i ,  c, ----- ]f0.S33GpT t, 

where G is the shear modulus of the plate material, 

w The roots s k (k = i, 2, 3) of the cubic equation are functions of the variable q. One 
root among them is real and positive for any values of q while the other two are either real 
and negative or complex conjugates with negative realparts. The exponential term in the inte- 
grand of (i. 8), which increases rapidly with the increase in ~, corresponds to the positive 
root. The product of this term by the Bessel function yields a function which oscillates at 
high frequency relative to zero and with abruptly growing amplitudes. Computation of the 
integral (i. 8) by numerical methods from this function is difficult. 

The integrand is converted by means of the formula 

exp (slq~) = 2 ch (slq~) - -  exp (--SFl~) , 

w h e r e  s t  i s  t h e  p o s i t i v e  r o o t  o f  t h e  c u b i c  e q u a t i o n .  T h i s  v a l u e  i s  s u b s t i t u t e d  i n t o  ( 1 . 8 ) .  
On the basis of the expression 

sin (qt y ' ~ - - s ~  
j So (q 1 ' : ~ )  r (~n~) d~ = 

l/  
6~ I 

0 q t -- s~ 

[12] for an imaginary value of the argument in the cosine, we may 

V = , o (cos<qx)( 
o 

resulting from ( 6 . 6 7 7 )  in 
obtain 

( 2 . 1 )  

where F is the integral whose integrand contains exponential terms with arguments with nega- 
tive real parts. As numerical computations have shown, the contribution of the term F in 
(2.1) is small in a wide range of t and diminishes with the growth in t. This term can be 
neglected for a steel plate and water and t > I0. In the case of an incompressible fluid 
(c-~ ~), formula (2.1) takes the form 

oo 

=--- I p,o, ) V t O ]~ t 2 q ( q - ~  #pit16,, q_ 2 - t  --a sin ( tlq2 V - ~ )  cos (qz) dq), 
o 

t, = rc,6 - i ,  ~ = [ t 2 ( q +  opz')] - i  

According to [i], the asymptotic formula 
oo 

_ _  2 Q t,/Sa-2/5 [ s i n / / c o s  (a-~/Sy2/5 • y--6/Sdy, V -- ~ J 
o 

• ---- xt -2/5 ( 2 . 2 )  
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can be obtained for large values of the time. For x = 0 the integral in (2.2) is expressed 

in terms of the F-function [12]: 

.i y-0l~ sin ydy = F ( - -  t /5)  sin ( - -  nil0) ~ t .8 .  
0 

H e n c e ,  t h e  a s y m p t o t i c  f o r m u l a  becomes  f o r  x = 0 

V = 0 229 Q ttlSa -215 ( 2 . 3 )  �9 ~ 

It is sometimes assumed in performing the approximate computations that the pressure 
acting from the fluid on the body inserted therein equals the product of the acoustic drag pc 
by the normal component of the velocity of the point under consideration on the body (plane 
reflection hypothesis). To obtain a solution by this hypothesis, the value of the appropri- 
ate pressure is substituted into the right side of the second equation in (I.i). Then the 
Laplace transform is applied to the equation. An ordinary differential equation in the vari- 
able x is hence obtained. This equation is solved for appropriate boundary conditions, and 
a Laplace transform of the quantity v is found in the section X = 0, 

z., L = 0 .66  Q (p-, _!_ - I .  ' ~ 
- -  PPI P)-o  "- 

After going over to the original, a formula can be obtained for the plate velocity, 

V : :  cu = [ . I3  9~5 ] /  P_.'L_ ~: t~' exp ( - -  "c) [, ,~ (T), ( 2 . 4 )  
Pi"i 

where Ig~ is the Besse! function of imaginary argument of order ~I~; ~ = 0.5pp~'t. 

w Computations using the formulas obtained were performed on the "Promin'" and "~Xr" 
digital computers. The quantity r = 1 -- s~, for which the appropriate cubic equation was 
formed, was determined in the computer program instead of the root s:. This permitted avoid- 
ance of the calculation of small differences during computation of the quantities in (2.1). 

As q + 0, the root s: tends to one and the integrand has an indeterminacy. Hence, the 
series expansion of the integrand in the neighborhood of the point q = 0 was used, which per- 
mitred resolution of the indeterminacy and execution of the integration for small values of 
the variable q. 

Results of computations for a steel plate contiguous to water (Pl/P = 7.85) are presented 

below. 

A graph of the plate velocity in the section X = 0 (curve i) is presented in Fig. I; curve 
2 has been obtained under the assumption that the fluid is incompressible. The results of both 
computations turn out to be close in the whole range of values of t except the origin (t < 5). 
Neglecting the fluid compressibility results in an error in determining the velocity of 16% 
for t = I0, 4% for t = 50, and 2% for t = 250, respectively, which is completely acceptable 
for execution of the computations. 

V" i 
0 

I0.2 . . . . . .  

L . . . . . . . . . . . . . . . .  
o 50 7/70 

Fig. i 

o, o ~, - - f i ~ - f - ] 7  " " - 

:_- ,<:_,oo 
~.208 ~ 7 

120 2 r ~ 

Fig. 2 
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Shear strain appears only in the initial moment of plate motion, and its influence then 
drops rapidly. Computations executed for a steel plate for t = 20 with and without shear 
taken into account agree in practice. This result agrees with the deduction in [I] that 
taking account of shear can be required only at times from the beginning of load action which 
are commensurate with several periods of longitudinal wave traversal over the plate thickness 
(to four periods). 

For large values of the time the asymptotic formulas (2.2) and (2.3) correspond to the 
solution in which fluid compressibility and plate inertia are neglected [I]. This means that 
the influence of the factors mentioned are asymptotically inessential. A graph of the asymp- 
totic value of the velocity is superposed in Fig. i (curve 3), fromwhich it follows that for t > I00 
the asymptotic solution yields a relative error less than 25% which diminishes with the rise in t. 

Shown in Fig. 2 are velocity distributions along the plate length, computed by using 
the asymptotic and exact methods. The graphs are constructed in the coordinate axes v, = 
VQ-~pc~t -~, • Curve I in the coordinate plate of the variables v,, • which corresponds to 
the asymptotic solution, occupies a fixed position. The remaining curves corresponds to 
values of the velocity obtained by the exact method for different values of t, and approach 
the curve i as t grows. The best agreement between the asymptotic and exact solutions is 
observed for bounded values of • The first intersections of the curves with the v, = 0 axis 
(the first nodes) are close to-each other in a broad range of variation in the variable t. 
Closure for the second points of intersection is observed for t > 300. 

The graph of the velocity (curve 4) computed by (2.4) in conformity with the plane re- 
flection hypothesis in Fig. i agrees with the exact solution for bounded t and yields a satis- - 
factory result up to t < 12 (with an error less than 25%). 

Estimating the possibility of applying the plane reflection hypothesis to the solution 
of different problems, it should be kept in mind that this hypothesis corresponds to con- 
sErained conditions of fluid motion in which the influence of fluid compressibility turns 

out to be essential. 

The plate dimensions and fluid volume are not constrained in the specific problem under 
consideration~ and the load is applied at one section of the plate. Under such conditions, 
the fluid has great freedom of displacement along the plate surface. The fluid presses on 
sections of the plate far from the site of load application, opposite to the direction of ac- 
tion of the force. The fluid itself is hence squeezed insignificantly. 

If the acting loads are represented in the form of a certain set of forces distributed 
over the plate surface, or the plate and fluid are bounded in size, then conditions constrain- 
ing the spread of the fluid along the plate surface can be produced. Under these conditions, 
taking account of fluid compressibility can be required in a broader range of times and it 
generally turns out to be impossible to accomplish displacement for certain kinds of motion 

without taking account of fluid compressibility. 

Similar conditions are produced, for instance, under the effect of a uniformly distributed 
transverse load applied over the whole surface of an infinite plate. In this case, the plane 

reflection hypothesis yields the exact result. 

The reasoning expressed indicates that selection of an acceptable computational hypothe- 
sis to take account of the influence of the fluid in each specific problem requires careful 

consi de ration. 
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A SELF-SIMILAR SOLUTION FOR FAN JETS WITH AN ARBITRARY DEGREE OF SWIRLING 

E. M. Smirnov UDC 532.526 

Solutions are known [1-4] to the problem of the propagation of swirled fan (radial) jets 
into a submerged space. Functions which are valid at a distance considerably exceeding the 
radius of the round slit, where the jet is always weakly swirled, are obtained in [i, 2]. In 
the search for a solution for a jet discharging from an infinitely narrow slit of finite 
radius the assumption of weak swirling of the jet was introduced in [3] as an auxiliary as- 
sumption. In [4], where several terms of an asymptotic expansion by inverse powers of the dis- 
tance from the nozzle were found for a laminar jet with a considerable swirling, the question 
of the determination of the integration constants remains open. 

In the present paper it is shown that the problem of the propagation of a fan jet dis- 
charging from an infinitely narrow slit of finite radius has a self-similar solution for any 
degree of swirling of the jet. 

w In the approximation of boundary-layer theory the equations describing the flow in 
swirled laminar or turbulent fan jets of incompressible liquid have the following form in the 
cylindrical coordinate system x, y, (p (the x axis is directed perpendicular to the axis of 
symmetry and ~ is the polar angle) 

3u , 3u ~r "~- I c) ,r . . .  

u-aTe.. -~- ~ ' - a 7 -  7 = g 0,--7.' ' (i.i) 

aw d- au, ,,u. 1 o ~ , .  
u-a-- d v a y  ' . = p a g  ' (1.2) 

a (.r,,) a (.n,) _ O, ( 1 . 3 )  
dx ' 8y 

w h e r e  u ,  v ,  and  w a r e  t h e  c o m p o n e n t s  o f  t h e  v e l o c i t y  v e c t o r  i n  t h e  d i r e c t i o n s  o f  t h e  x ,  y ,  
and  ~ a x e s ;  T x a n d  ~ a r e  t h e  c o m p o n e n t s  o f  t h e  s h e a r  s t r e s s  o f  f r i c t i o n  i n  t h e  d i r e c t i o n s  
o f  t he  x a n d  q a x e s ;  p i s  t h e  d e n s i t y  o f  t h e  l i q u i d .  

F i r s t  l e t  us  c o n s i d e r  a f r e e  s u b m e r g e d  j e t .  Then  t h e  s y s t e m  ( 1 . 1 ) - ( 1 . 3 )  mus t  be  i n t e -  
g r a t e d  w i t h  t h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s :  

l u = O ,  w-~O at y = _ _  c~; 

(-~-,j = 0 at y = O .  (1.4) 

The goal of the present report is to find a self-similar solution, and therefore the 
initial condition loses its importance. The two integral conditions of conservation needed 
for complete determinacy of the problem will be obtained in the course of the solution. 

We will adopt the widely prevalent hypothesis that the following relationship is valid 
not only for laminar flows but also for turbulent flows of the boundary-layer type: 
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